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The Use of Microarrays in Microbial Ecology 

By Gary L. Andersen, Zhili He, Todd Z. DeSantis, Eoin L. Brodie, and Jizhong Zhou 

Abstract 

Microarrays have proven to be a useful and high-throughput method to provide targeted DNA 

sequence information for up to many thousands of specific genetic regions in a single test. A 

microarray consists of multiple DNA oligonucleotide probes that, under high stringency 

conditions, hybridize only to specific complementary nucleic acid sequences (targets). A 

fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of 

interest. In this chapter we will look at how microarrays are used in microbial ecology, especially 

with the recent increase in microbial community DNA sequence data.  Of particular interest to 

microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a 

community and functional gene arrays are used for the analysis of functional genes, and, by 

inference, phylotypes in environmental samples.  A phylogenetic microarray that has been 

developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a 

microarray that targets the known diversity within the 16S rRNA gene to determine microbial 

community composition.  Using multiple, confirmatory probes to increase the confidence of 

detection and a mismatch probe for every perfect match probe to minimize the effect of cross-

hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of 

thousands of taxa present in an environmental sample.  The PhyloChip is shown to reveal greater 

diversity within a community than rRNA gene sequencing due to the placement of the entire 

gene product on the microarray compared with the analysis of up to thousands of individual 

molecules by traditional sequencing methods.  A functional gene array that has been developed 

by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that 
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dynamically identifies functional activities of multiple members within a community. The recent 

version of GeoChip contains more than 24,000 50mer oligonucleotide probes and covers more 

than 10,000 gene sequences in 150 gene categories involved in carbon, nitrogen, sulfur, and 

phosphorus cycling, metal resistance and reduction, and organic contaminant degradation. 

GeoChip can be used as a generic tool for microbial community analysis, and also link microbial 

community structure to ecosystem functioning. Examples of the application of both arrays in 

different environmental samples will be described in the two subsequent sections. 

 

1. INTRODUCTION 

1.1 The use of microarray technologies for microbial ecology studies 

Microarrays have become an increasingly popular method in the microbial ecologist’s toolkit for 

analyzing microbial communities.  This trend has also been observed in other disciplines 

resulting in an increase in PubMed entries mentioning microarrays from 20 in 1998 to over 

34,300 by November 2008 (Loring, 2006). Within the scope of this chapter, microarrays can be 

simply thought of as a high throughput way to detect the presence and concentration of multiple 

nucleotide sequences within an environmental sample. Sequence complementarity between 

single stranded nucleic acid molecules, one of which is typically immobilized on the microarray, 

leads to the hybridization of specific target sequences from a sample.  The advent of large 

genomic sequencing centers and the continuing decrease in sequencing costs have lead to an 

explosion of DNA sequence data, including data from environmental microorganisms.  This has 

created an even greater need for high throughput methods such as microarrays to make efficient 

use of the expanding sequence databases. 
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In this chapter we will discuss two specific examples of microarrays that are being used to 

answer questions of interest to microbial ecologists.  The first example targets the 16S rRNA 

gene of bacteria and archaea (PhyloChip) to identify specific members within a complex 

microbial community.  We will discuss how this microarray has been used to characterize the 

microbial diversity of selected environments.  The second example targets known functional 

gene markers to study functional gene diversity and activities of microorganisms in the 

environment.  We will demonstrate how functional gene arrays (GeoChips) have been used to 

analyze microbial communities, and provide linkages of microbial genes/populations to 

ecosystem processes and functions. 

 

1.2 DNA microarrays 

Based on the target of molecular markers, two types of major microarrays have been used for 

microbial community analysis.  The first are phylogenetic microarrays that target phylogenetic 

genes, such as the 16S rRNA gene and gyrB gene. Phylogenetic microarrays allow us to identify 

microorganisms and their phylogenetic relationships in a community of interest. The second are 

functional gene arrays that target key functional gene markers that are indicative of a specific 

physiological or metabolic process, such as nirK and nirS encoding nitrite reductases, key 

enzymes of the denitrification process (Braker et al., 2000), and amoA encoding ammonia 

monooxygenase, a key enzyme for ammonia oxidization (Rotthauwe et al., 1997). Functional 

gene arrays allow us to study functional gene diversity and activities of microbial communities. 

In this section, both microarrays are introduced below. 

1.2.1 Phylogenetic microarray 

1.2.1.1 Analysis of microbial communities with 16S rRNA targeted microarrays 
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Molecular methods for detecting and monitoring bacteria and archaea routinely rely upon 

classifying heterogeneous 16S rRNA molecules, either as RNA or as gene fragments encoding 

RNA that are amplified by universal PCR primers. The general method of sampling sequence 

types has been to clone and sequence PCR products derived from these biomarkers.  However, 

the number of clones required to adequately catalogue the majority of taxa in a sample is 

typically unwieldy assuming a log-normal distribution (Curtis and Sloan, 2005). For example, in 

a typical soil sample with one billion bacterial cells and 10,000 different species, one would need 

to sample at least one million sequences (Gans et al., 2005).  Pyrosequencing has provided a 

alternative to cloning by producing a greater sample size at a lower cost (Huse et al., 2008).  But, 

as they are currently practiced, neither method is able to cover environmental microbial 

populations spanning multiple orders of magnitude within a single sample.   Sequencing 

community members is an essential but inefficient process, where the biomarkers representing 

the most abundant phylotypes or species mask less abundant but potentially significant members.   

As an alternative approach to biomarker sampling by cloning, hybridization of target 

sequences to an array of probes, permits much greater numbers of molecules to be sampled 

compared with the hundreds or thousands that usually comprise an environmental clone library.  

Because of the small, oftentimes single nucleotide differences within the probed regions of the 

biomarker genes for the differentiation of microbial taxa, a high level of sequence specificity is 

desired.  Oligonucleotide DNA microarrays often consist of large numbers of individual short, 

15- to 30-nucleotide capture probes to offer the highest level of specificity for the identification 

of specific target sequences, particularly in a background of closely related sequences.  As stated 

earlier in Chapter 1, the 16S rRNA gene sequence provides a number of advantages in its use as 

a biomarker for the identification of individual bacterial components in complex environmental 



 5

samples.  Rather than translating its genetic code into protein, rRNA acts directly in the protein 

assembly machinery as a functional molecule. Due to structural constraints of this molecule, 

specific regions throughout the 16S rRNA gene have a highly conserved nucleotide sequence 

while non-structural segments may have a high degree of variability (Woese et al., 1975).  

Probing the regions of high variability can be used to identify microorganisms at the species 

level while regions of less variability are used for group-level identification.  With only one to a 

few nucleotides of sequence variability, at best, within any 15- to 30-bp region that may be 

targeted by a probe for discrimination between related microbial species, it is imperative to 

maximize the probe-target sequence specificity in the microarray system.   

One example of a microarray that has been successfully used to discriminate bacterial 

species uses a hierarchical set of oligonucleotide probes to target organisms at different levels of 

taxonomic specificity on a matrix of acrylamide gel pads on a glass slide (Liu et al., 2001).  

Developed by Liu and Stahl, this method uses the 3-dimensional nature of the gel matrix to allow 

solution-based probe kinetics with a non-equilibrium dissociation approach for high levels of 

discrimination between target and non-target 16S rRNA gene sequences.  Amplified 16S rRNA 

gene sequences are placed on the gel-pad microarray and allowed to hybridize under low-

stringency conditions.  Increasing the hybridization temperature (increased stringency) results in 

the preferential dissociation of non-homologous probe-target complexes. The simultaneously 

generated melting curves for the perfect match (PM) and mismatch (MM) duplexes are used to 

define the temperature at which 50% of the starting duplex remains intact (dissociation 

temperature, Td.)  It was found that, for the most part, a probe-target duplex with one MM has a 

greater than two-fold level of discrimination from a PM duplex at Td, thus allowing greater 

specificity of detection by differentiating between PM and MM complexes.  
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By contrast, other 16S rRNA gene-targeted or phylogenetic microarrays use short 

oligonucleotide probes bound to a two-dimensional surface (e.g., glass) with specific sequences 

located at defined two dimensional coordinates. Many studies have successfully used these 16S 

rRNA gene-targeted microarrays to differentiate bacteria in specific groups, such as 

Enterococcus (Lehner et al., 2005), Cyanobacteria (Castiglioni et al., 2004), nitrifying bacteria 

(Kelly et al., 2005) and fish pathogens (Warsen et al., 2004) and for quantitative tuning of 

sampling protocols to enhance detection of desired taxonomic groups. 

1.2.1.2 A comprehensive view of microbial diversity 

Instead of targeting specific groups or classes of organisms, another strategy is to perform a 

comprehensive screen for all known bacterial or archaeal taxa on a single microarray. This relies, 

initially, on obtaining all known 16S rRNA gene sequences from the major sequence 

repositories, including Lawrence Berkeley National Laboratory’s Greengenes 

(greengenes.lbl.gov) (DeSantis et al., 2006b), Michigan State University’s ribosomal database 

project (RDP; rdp.cme.msu.edu) (Cole et al., 2005), the Max Planck Institute for Marine 

Microbiology’s Silva database (http://www.arb-silva.de/), and the National Institute of Health’s 

NCBI (www.ncbi.nlm.nih.gov).  There are currently over 700,000 individual sequences housed 

in these repositories but due to the lack of peer-review before inputting the sequences from 

individual submitters there are a number of quality control issues that may not have been 

addressed, producing inaccurate data.  To reduce this problem, a series of filters on the sequence 

data may be employed to reduce the possibility that an assay is created for a non-existing target.  

The Greengenes database of 16S rRNA gene sequences compiles information from other 

databases to produce a set of sequences that are compatible with a comprehensive phylogenetic 

microarray design.  Among the issues addressed by this database are: (i) standardized taxonomic 
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placement of individual 16S rRNA gene sequences, (ii) removal of chimeric sequences, (iii) 

removal of poor quality (ambiguous) sequences, and (iv) distribution of data in a consistently 

aligned sequence format. 

Because the discovery rate of 16S sequence records from uncultured organisms now 

exceeds that from their cultured counterparts, taxonomic placement of sequences lags behind.  In 

fact, over one-third of full-length 16S records in GenBank are presented without taxonomic 

nomenclature and are simply annotated as “environmental samples” or “unclassified”.  In 

contrast, records in the Greengenes dataset are annotated with taxonomy proposed by five 

independent curators: NCBI, RDP, based on Bergey’s Manual?;  ((Cole et al., 2005), Wolfgang 

Ludwig (Ludwig et al., 2004), Phil Hugenholtz (Hugenholtz, 2002) and Norm Pace (Pace, 1997), 

collectively covering over 95% of the database.  Incongruent taxonomic nomenclature exists 

among curators even at the phylum-level, yet each is tracked to promote user awareness of 

several estimations of phylogenetic descent allowing a balanced approach to node and 

operational taxon unit (OTU) nomenclature when labeling probe specificity.   

Since 16S rRNA genes from environmental DNA are usually PCR amplified, it has been 

suspected that many chimeric sequences are present in the public repositories.  A PCR-generated 

chimeric sequence usually comprises two phylogenetically distinct parent sequences and occurs 

when a prematurely terminated amplicon re-anneals to a foreign DNA strand and is copied to 

completion in the following PCR cycles. The point at which the chimeric sequence changes from 

reflecting one parent to the next (break point) can be misconstrued as novel biomarker for a 

unique organism (Figure 1.).  The trend has been observed in 3% of the sequences from 

uncultured organisms and 0.2% of sequences annotated as pure cultures (Ashelford et al., 2005; 

DeSantis et al., 2006b).  Very recently, large 16S rRNA clone libraries have been deposited to 
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GenBank with an inferred chimeric content of 

up to 8% of the sequences (Ashelford et al., 

2006).  The Bellerophon (Huber et al., 2004) 

chimera test result is available for each 

Greengenes 16S record allowing putative 

chimeras to be avoided.  This step helps to 

ensure that all probes in a microarray design 

are complementary to sequences from true 

organisms. 

Public DNA data repositories rarely 

quality-check the primary data 

(chromatograms) of the sequences they distribute. Unfortunately, the majority of 16S rRNA gene 

sequences in the public databases are decoded from single coverage sequencing reads typically 

yielding “non-ambiguous” yet non-reproducible base calls in 2 of 400 chromatogram peaks 

(0.5%) even under ideal conditions where data is collected in small batches by experienced 

research groups (Fields et al., 2006). The problem is magnified in high-throughput efforts.  

Assuming chromatograms or quality scores are not obtainable for the sequence collection, 

various poor quality records can still be identified.  Obvious sequencing reaction failures for the 

majority of the gene or a just a region can be easily discarded or trimmed based on the 

distribution of ambiguous base-calls (non-“ACGT” characters).  Interpreted chromatograms 

should also have zero or few long homopolymeric regions (i.e. eight or more sequential adenines 

reported) since these have rarely been confirmed in isolates and base calls downstream of the 

homopolymer commonly have increased error rates.  Furthermore, an emphasis should be placed 

Figure 1. An example of a chimeric artifact generated during PCR 
amplification of a mixed population using broad-specificity 16S 
rRNA gene primers. Partial amplicons may form hybrids with 
dissimilar templates because conserved regions exist at positions 
medial to the PCR primer targets.  The partial amplicon can be 
extended using the dissimilar 16S gene as a template. 
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on reads covering a large portion of the gene of interest so that multiple probes can be picked 

from throughout the domains.  Greengenes enables de-selection of records with an undesirable 

percentage of ambiguous calls, one or more homopolymeric runs, and low gene coverage (short 

reads). 

 

1.2.2 Functional gene arrays 

As described in Chapter X, one gram of soil contains more than 5000 microorganisms, and a 

majority of them (>99%) have not yet been cultivated (Whitman et al., 1998), which presents 

enormous difficulties for microbiologists to study microbial composition, structure, function, and 

dynamics in natural and/or contaminated environments. Using functional gene markers to 

investigate such microbial communities is therefore necessary. Schadt et al. (Schadt et al., 2004) 

listed some of those functional genes currently used in environmental studies that allow us to 

study functional gene diversity and activities of microorganisms in the environment. Currently, 

conventional molecular methods, such as PCR-based cloning, and in situ hybridization are very 

useful in providing snap shots for microbial diversity, structure and function, but they fail to 

provide a full picture of microbial activities and dynamics in a rapid and high-through-put 

fashion. Although microarray technology has been used successfully to analyze global gene 

expression in pure culture studies, adapting microarray technology for use in environmental 

studies presents numerous challenges in terms of probe design, the coverage of gene sequences, 

specificity, sensitivity and quantitative capability. To overcome such obstacles for studying 

microbial communities in natural settings, a particular type of microarrays, called functional 

gene arrays (FGAs), has been developed and used. This type of microarray contains probes from 

genes involved in key microbially-mediated biogeochemical processes, such as C, N, P, and S 
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cycling and utilization, organic contaminant degradation, and metal reduction and resistance. 

FGAs that mainly target geochemical processes are also called GeoChips (He et al., 2007). FGAs 

are powerful tools to address some fundamental questions in microbial ecology, 

biogeochemistry, and environmental biology, such as: (i) What functional genes/microorganisms 

are in a microbial community? (ii) What biological or geochemical processes dominate in a 

microbial community? (iii) What are the dynamics of activity for a given gene or process? (iv) 

How does microbial community structure link to its function? (v) What are the relationships 

between functional gene activities/abundance and geochemical parameters? 

For almost one decade, microbiologists, especially microbial ecologists have tried to 

answer a central question whether microarray-based FGA technologies can provide specific, 

sensitive and quantitative detection of microbial populations and activities within the context of 

environmental applications.  The technology has evolved several generations in terms of 

gene/probe coverage and related computational techniques for functional gene sequence 

retrieval, probe selection, data analysis, and information storage. The first generation of FGAs 

was prototype microarrays with a focus on proof of the concept. For example, such a prototype 

microarray was constructed with 89 PCR-amplicon probes targeting functional genes involved in 

nitrogen cycling using pure cultures and laboratory clones (Tiquia et al., 2004; Wu et al., 2001). 

It presents a great challenge to obtain PCR amplicon probes from a diversity of environmental 

clones and bacterial strains from various sources, so constructing a comprehensive FGA is very 

difficult. Therefore, oligonucleotide-based FGAs have become more popular due to their high 

specificity, ease of construction, and low cost. Oligonucleotide FGAs are fabricated with 

synthetic oligonucleotide probes with 50mer {Rhee, 2004 #436) or 70mer (Taroncher-Oldenburg 

et al., 2003) in length, and they can be spotted on glass slides (Rhee et al., 2004; Taroncher-
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Oldenburg et al., 2003; Tiquia et al., 2004; Wu et al., 2001), or nylon membranes (Steward et al., 

2004).  Different FGAs have been systematically evaluated in terms of their sensitivity, 

specificity, and quantitation, and the results demonstrate that FGA technology holds promise for 

the analysis of microbial communities. In addition, an FGA may target both functional and 

phylogenetic markers. For example, Loy et al. (Loy et al., 2004) constructed an array containing 

both phylogenetic (16S rRNA gene) and functional (dsrA/B) markers and those example FGAs 

were classified as GeoChip 1.0.  The current version, GeoChip 2.0 has been designed and used 

for a comprehensive analysis of microbial community structure, function, and dynamics in a 

natural or contaminated environment. The coverage of gene sequences/probes has greatly 

increased from hundreds to tens of thousands, and related computational techniques, such as 

sequence retrieval, probe design, and data analysis have been greatly improved. GeoChip 2.0 

contains 24,243 oligonucleotide (50mer) probes and covers > 10,000 genes in >150 functional 

groups involved in nitrogen, carbon, sulfur and phosphorus cycling, metal reduction and 

resistance, and organic contaminant degradation (Table 1; (He et al., 2007)). This array uses 

experimentally established probe design criteria (He et al., 2005b; Liebich et al., 2006) and a 

new computational software tool, CommOligo (Li et al., 2005) for oligonucleotide probe 

selection. In addition, an analysis of sub-nanogram quantities of microbial community DNA has 

been achieved by whole-community genome amplification (Wu et al., 2006). This approach 

made it possible to analyze microbial communities with low biomass. The next generation, 

GeoChip 3.0, is currently being developed. It is expected to be more comprehensive, covering 

>45,000 gene variants (sequences) in > 290 gene categories. Many new features will be 

implemented.  
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1.3 General Experimental Procedures 

1.3.1 Sample preparation 

For more detailed description on how microarrays are used to identify and quantify specific 

genetic sequences for biological research in general please refer to the excellent recent reviews 

by R. B. Stoughton and J. W. Edwards (Allison et al., 2007; Stoughton, 2005).  One of the main 

factors distinguishing the use of microarrays within microbial ecology from other areas of study 

is that the genetic sequences are derived from multiple organisms in what is usually a complex 

microbial community.  Because the constituents of a microbial community typically have very 

different types of cell walls it is important to find a target isolation and purification method that 

is suitable for a wide range of conditions.  Equally important for microbial ecology applications 

is to remove environmental inhibitors of nucleic acid amplification.  An example of a robust 

nucleic acid extraction and purification protocol is the method established by Zhou et al. (Zhou 

et al., 1996) or using other approaches described in Chapter X. The method used normally 

requires modification depending on the experimental goals and environmental sample type, such 

as soils, sediments, and groundwater (Hurt et al., 2001). Many DNA extraction and purification 

kits are commercially available, and these were recently compared in terms of DNA extraction 

efficiency from different types of samples (Klerks et al., 2006).  Purified DNA samples should 

have A260/A280 > 1.80, and A260/A230 >1.70. Since a typical hybridization for GeoChip analysis 

requires 2-5 µg purified DNA, samples with lower than 2 µg require amplification using the 

currently developed WCGA (whole community genome amplification) method (Wu et al., 2006).   

Obtaining purified mRNA from environmental samples is an even greater challenge than DNA, 

especially for low-abundance mRNAs. This is still often desirable since mRNA is an ideal 

indictor of microbial activity. Total RNA can be isolated and purified using the approach 
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described by Hurt et al. (Hurt et al., 2001). This method can isolate DNA and RNA 

simultaneously with the same sample. Recently, a new gel electrophoresis method to isolate 

community RNA was developed (McGrath et al., 2008). Normally, the ratios of A260/A280 and 

A260/A230 for a purified RNA are expected to be >1.90, and >1.70, respectively.  For analysis of a 

microbial community, a normal hybridization requires 10-20 µg purified RNA, samples with 

lower than 5 µg will again require amplification, as may be performed with the novel whole 

community RNA amplification approach (WCRA) (Gao et al., 2007) to obtain cDNA. With such 

a method, 1,200- to 1,800-fold amplification can be obtained with 10 to 100 ng of RNA as 

templates (Gao et al., 2007). 

 

1.3.2 Microarray fabrication 

There are several different styles of microarrays used for microbial community analysis.  The 

Affymetrix (Santa Clara, CA) platform DNA arrays that are used on phylogenetic arrays such as 

the PhyloChip have the short oligonucleotide probes (~25-mer) synthesized directly on the glass 

surface by a photolithography method at an approximate density of 10,000 molecules per µm2 

(Chee et al., 1996).  Spotted DNA arrays use oligonucleotides that are synthesized individually at 

a predefined concentration and are applied to a chemically activated glass surface.  

Oligonucleotide length can range from a few nucleotides to hundreds of bases in length but are 

typically in the 50-mer range for functional arrays such as the GeoChip. 

 

1.3.3 Target labeling 

The nucleic acid targets are labeled so that a laser scanner tuned to a specific wavelength can 

measure the number of fluorescent molecules that hybridized to a specific DNA probe.  For 
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photolithography arrays such as Affymetrix, the nucleic acid targets are fragmented to between 

50 and 100-bp size and a biotinylated nucleotide is added to the end of the fragment by terminal 

DNA transferase.  At a later stage, the biotinylated fragments that hybridize to the 

oligonucleotide probes are used as a substrate for the addition of multiple phycoerythrin 

fluorophores by a sandwich antibody (Streptavidin) method. 

For spotted arrays such as the GeoChip, the purified community DNA can be 

fluorescently labeled by random priming using the Klenow fragment of DNA polymerase as 

described previously (Wu et al., 2006) and more than one fluorescent moiety can be used (e.g. 

controls could be labeled with Cy3, and experimental samples labeled with Cy5 for direct 

comparison by hybridization to a single microarray). Total community RNA (e.g. 5-10 µg) can 

be labeled using Cy5 or Cy3 with SuperscriptTM II/III RNase H- reverse transcriptase (Invitrogen 

Life Technologies, CA) as described by He et al. (He et al., 2005a). The labeled cDNA target is 

then purified and concentrated. 

 

1.3.4 Hybridization 

Microarray hybridizations are then carried out under stringent conditions described previously 

(Rhee et al., 2004; Wu et al., 2006).  The temperature can be lowered to reduce stringency and 

allow the detection of more divergent sequences.  Robotic hybridization and stringency wash 

stations can be used to give more consistent results.  The photolithography arrays use an 

automated Affymetrix hybridization and fluidics station for all washes as well as fluorescent 

staining with antibody and phycoerythrin. Spotted arrays can use the TECAN HS4800 (Tecan 

U.S., Inc., Durham, NC) to replace manual hybridization, which allows 48 hybridizations to be 

completed in 6 hours. 
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1.3.5 Signal quantification and analysis 

After hybridization the arrays are scanned using a microarray scanner (e.g. GeneChip Scanner 

3000, Affymetrix, Santa Clara, CA for PhyloChip, or ProScan Array, Perkin Elmer, Boston, MA 

for GeoChip) equipped with lasers at a resolution of 10 µm or finer. The scanned image displays 

are saved and analyzed by quantifying the pixel density (intensity) of each spot using image 

quantification software (e.g. GeneChip Microarray Analysis Suite, version 5.1 Affymetrix, Santa 

Clara, CA for PhyloChip, or ImaGene 6.0, Biodiscovery Inc. Los Angeles, CA for GeoChip). 

 

2. PhyloChip, A PHYLOGENETIC MICROARRAY 

2.1 PhyloChip Design. 

The key considerations that must be taken into account in designing a 16S rRNA gene-based 

microarray to identify individual organisms in a complex environmental mixture are 1.) natural 

sequence diversity and 2.) potential cross-hybridization.  Sequence diversity is an issue as we 

sample new and distinctive environments such as bioaerosols.  There may be many 

undocumented organisms with 16S rRNA gene sequences that are similar, but not identical to the 

sequences that were used for array design.  Microarrays based upon single sequence-specific 

hybridizations (single probes) per OTU may be ineffective in detecting such environmental 

sequences with one or several polymorphisms.  To overcome this obstacle, an Affymetrix-style 

photolithography chip was designed with a minimum of 11 different, short oligonucleotide 

probes for each taxonomic grouping, allowing for the failure of one or more probes.  Also 

important is non-specific cross hybridization, especially when an abundant 16S rRNA gene 

shares sufficient sequence similarity to non-targeted probes, such that a weak but detectable 
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signal is obtained.  It has been found that the perfect match-mismatch (PM-MM) probe pair 

approach effectively minimizes the influence of cross-hybridization.  Widely used on expression 

arrays as a control for non-specific binding (Chee et al., 1996), the central nucleotide is replaced 

with any of the three non-matching bases so that the increased hybridization intensity signal of 

the PM over the paired MM indicates a sequence-specific, positive hybridization.  By requiring 

multiple PM-MM probe-pairs to have a positive interaction, we substantially increase the chance 

that the hybridization signal is due to a predicted target sequence. 

Once a reference set of valid genes is established it is important to create a multiple 

sequence alignment (MSA).  The MSA allows confident comparisons between sequences when 

selecting probes.  For instance, when a candidate probe does not complement a sequence it is 

practical to determine if sequence data is available at the expected probe position.  Filtered, 

aligned 16S rRNA sequence records can be exported directly from Greengenes.  Since the 

Greengenes database consistently spreads the gene into an alignment of 7682 characters in width, 

then private, in-house sequences can be formatted into the same MSA using the NAST (Nearest 

Alignment Space Termination) web tool (DeSantis et al., 2006a).  Other strategies exist for 

compiling MSAs from various sequence sources and the choice is governed by the size of the 

project.  In general, alignment can be done with clustalw (Thompson et al., 1994) for small 

MSAs (<500 sequences), MUSCLE (Edgar, 2004) for mid-size MSAs, (500-10,000 sequences) 

or NAST (DeSantis et al., 2006a) for large MSAs (>10,000 genes).  

 

2.2 Simultaneous clustering of genes and probes. 

The objective of the probe selection strategy for comprehensive prokaryotic identification is to 

obtain an effective set of probes capable of correctly categorizing mixed amplicons into their 
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proper operational taxonomic unit (OTU) designations.  Each OTU is formed from sequences, 

which have common oligomer targets, considering only those targets that meet the G+C, melting 

temperature, and secondary structure constraints of the design.  Whereas clustering implemented 

to infer phylogeny may utilize similarities along the entire gene, creating OTUs relies on finding 

shared attributes that can be assayed.  A supervised clustering procedure is used which consists 

first of generating numerous candidate OTUs by unsupervised hierarchical clustering using pair-

wise gene distances measured by megaBLAST (Zhang et al., 2000) or counts of unique targets.  

Then, each candidate OTU is evaluated to determine the count of targets which are 

simultaneously prevalent across the genes of the candidate OTU and also incapable of 

hybridization to genes outside the OTU.   

In designing the G2 PhyloChip, probes presumed to have the capacity to correctly 

hybridize were those unique 25-mers that also contain a central 17-mer not matching any 

sequences outside the OTU (Urakawa et al., 2002).  Thus, probes that were unique to an OTU 

solely due to a distinctive base in one of the outer four bases were avoided.  For each OTU 

harvested from the hierarchical trees, a set of 11 or more specific 25-mers (probes) was sought. 

Three classes of probe sets resulted from the clustering procedure.  The resulting 8,741 OTUs, 

each containing an average of 3% sequence divergence, represented all 121 demarcated bacterial 

and archaeal orders.  In most cases, as expected, the OTUs contained sequences that were 

previously identified as related using the phylogenic tree approaches.  For a majority of the 

OTUs represented on the PhyloChip (5,737; 65%), probes were designed from regions of gene 

sequences that have been identified only within a given taxon. For 1,198 taxa (14%), no probe-

level sequence could be identified that was not shared with other groups of 16S rRNA gene 

sequences, although the gene sequence as a whole was distinctive. For these taxonomic 
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groupings, an average of 24 probes (but no less than 11 probes) was designed to a combination 

of regions on the 16S rRNA gene that taken together as a whole did not exist in any other taxa. 

For the remaining 1,806 taxa (21%), a set of probes were selected to minimize the number of 

putative cross-reactive taxa. Although more than half of the probes in this group have a 

hybridization potential to one outside sequence, this sequence was typically from a 

phylogenetically similar taxon. For all three probe set classes, the advantage of the hybridization 

approach used was that multiple OTUs could be identified simultaneously by targeting unique 

regions or combinations or regions from genes.  

 

2.3 Analyzing PhyloChip data 

The G2 PhyloChip consists of 506,944 probe features, arranged as a grid of 712 rows and 

columns. Of these features, 297,851 are oligonucleotide PM or MM probes with exact or inexact 

complementarity, respectively, to 16S rRNA genes. The remaining probes are used for image 

orientation, normalization controls, or for pathogen-specific signature amplicon detection using 

additional targeted regions of the chromosome (Wilson et al., 2002).  Each high-density 16S 

rRNA gene microarray is designed with additional probes that: 1) target amplicons of 

prokaryotic metabolic genes spiked into the 16S rRNA gene amplicon mix in defined quantities 

just prior to fragmentation and 2) are complimentary to pre-labeled oligonucleotides added into 

the hybridization mix. The first control collectively tests the target fragmentation, labeling by 

biotinylation, array hybridization, and staining/scanning efficiency. It also allows the overall 

fluorescent intensity to be normalized across all the arrays in an experiment.  The second control 

directly assays the hybridization, staining and scanning. 
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Complementary targets to the probe sequences hybridize to the array and fluorescent 

signals are captured as pixel images using standard Affymetrix software (GeneChip Microarray 

Analysis Suite, version 5.1) that reduces the data to an individual signal value for each probe and 

is typically exported as a human readable “CEL” file.  Background probes are identified from the 

CEL file as those producing intensities in the lowest 2% of all intensities. The average intensity 

of the background probes is subtracted from the fluorescence intensity of all probes. The noise 

value (N) is the variation in pixel intensity signals observed by the scanner as it reads the array 

surface. The standard deviation of the pixel intensities within each of the identified background 

probe intensities is divided by the square root of the number of pixels comprising that feature. 

The average of the resulting quotients is used for N in the calculations described below.  

Probe pairs scored as positive are those that meet two criteria:  (i) the fluorescence intensity from 

the perfectly matched probe (PM) is at least 1.3 times greater than the intensity from the 

mismatched control (MM), and (ii) the difference in intensity, PM minus MM, is at least 130 

times greater than the squared noise value (>130 N2). The positive fraction (PosFrac) is 

calculated for each probe set as the number of positive probe pairs divided by the total number of 

probe pairs in a probe set.  An OTU is considered “present” when its PosFrac for the 

corresponding probe set is >0.92 (based on empirical data from clone library analyses).  

Replicate arrays can be used collectively in determining the presence of each OTU by requiring 

each to exceed a PosFrac threshold.  Present calls are propagated upwards through the taxonomic 

hierarchy by considering any node (sub-family, family, order, etc.) as “present” if at least one of 

its subordinate OTUs was present. 
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Figure 2.  Comparison of cloning and PhyloChip (Array) 
analysis of air, soil and water samples. Left panel shows 
numbers of bacterial sub-families detected by array and 
cloning, array only, cloning only and novel sequences not 
detectable by the array. Right panel shows sub-family 
accumulation curves obtained by serial clone observations. 
The maximum diversity scenario where every clone sampled 
represents a new sub-family is indicated by grey line with 
constant slope = 1. 

Hybridization intensity is the measure of 

OTU abundance and is calculated in 

arbitrary units for each probe set as the 

trimmed average (maximum and minimum 

values removed before averaging) of the PM 

minus MM intensity differences across the 

probe pairs in a given probe set. All 

intensities <1 are shifted to 1 to avoid errors 

in subsequent logarithmic transformations.  

 

2.4 Comparing PhyloChip and Clone 
Libraries 
 
The breadth and accuracy of the PhyloChip 

in detecting diverse 16S rRNA gene 

sequence types compared to cloning-and-

sequencing can be directly compared 

(DeSantis et al., 2007).  Using three 

environmental samples: urban aerosol, subsurface soil and subsurface water, 16S PCR products 

were classified using both methods.  Approximately 8% of the clones could not be placed into a 

known sub-family and were considered novel.  The microarray results confirmed the majority of 

clone-detected sub-families and additionally demonstrated greater amplicon diversity (Figure 2, 

left) extending into phyla not observed by the cloning method.  Sequences within the phyla 

Nitrospira, Planctomycetes, and TM7, which were uniquely detected by the array, were verified 

with specific primers and subsequent amplicon sequencing.  Communities dominated by few 
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sub-families are most likely to errantly appear well sampled (See accumulation curve for water, 

Fig 2, Right) by the clone library.  The PhyloChip enables observation of the rarer bacterial 

populations since the entire mass of PCR products (~1012 molecules) are sampled as opposed to 

a mere hundreds to thousands when cloning.  In general, although the microarray is unreliable in 

identifying novel taxa, it reveals greater diversity in environmental samples than sequencing a 

typically sized (300-700) clone library. Deeper sequencing of up to several hundred thousand 

targets is possible with pyrosequencing methods.  This has the potential to reduce the difference 

in diversity detected by both methods but at present such efforts are typically confined to fewer 

samples and not to fully replicated ecological studies.   

 

2.5 Direct analysis of microbial community activity by microarray analysis of ribosomal 

RNA (rRNA). 

While analysis of DNA by high-density phylogenetic microarrays provides information 

regarding relative changes in biomass within a microbial community, cell division in natural 

ecosystems may occur on the order of hours to decades or even millennia (Phelps et al., 1994). 

Therefore the immediate environmental impacts on microorganisms may not be apparent through 

the analysis of DNA turnover rates. As in studies using stable-isotope labeled substrates such as 

13C (see Chapter 4), cellular RNA due to its higher synthesis rates, responds rapidly to 

environmental stimuli. For this reason, assaying the more labile RNA molecules permits 

immediate impacts to be monitored independent of replication. 

Many standard approaches to sample preparation for RNA analysis require multiple 

enzymatic steps to replicate, amplify and label nucleic acid targets (e.g. reverse transcription, in 

vitro transcription or PCR). An advantage of these approaches is the ability to detect lower-
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abundance species but the quantitative representation of the original population may be altered 

during enzymatic amplification steps, such as PCR, or by the labeling procedure itself. Direct 

labeling of RNA on the other hand does not typically require amplification and also necessitates 

fewer manipulations, leading to a reduction in bias. 

 Direct labeling of RNA can be accomplished by various means such as base-

incorporation with labeled nucleotides, or chemical modification. We have chosen to use a 

recently developed direct-labeling method using T4 RNA ligase to attach a biotinylated 

nucleotide donor molecule to the 3′ end of RNA targets according to the approach of Cole et al 

(Cole et al., 2004). This approach results in uniform end-labeling of RNA fragments, avoiding 

sequence bias inherent in methods which require incorporation of labeled nucleotides during 

synthesis (e.g. biotin–dUTP). End-labeled RNA produced through this approach is predicted to 

have higher target–probe affinity because hybridization is unimpaired by label molecules, 

whereas methods that either label the nucleic acid strand internally, such as biotin–ULS 

(Vanbelkum et al., 1994), or chemically modify a nucleotide (Kelly et al., 2002) can result in 

decreased hybridization efficiency (Cook et al., 1988). As the probes on the Affymetrix platform 

are tethered at the 3’ end , the 3′ position of the label will result in increased exposure of the 

biotin for more efficient binding by the streptavidin-fluorophore conjugate. Furthermore the 

donor molecule used to label targets with biotin contains biotin moieties tethered to the 3'-

hydroxyl, rather than attached to the nucleobase.  This permits multiple biotin molecules (3 in 

this case) to be tethered sequentially to the donor nucleotide without any significant reduction in 

ligation efficiency and has the added potential of enhancing overall signal intensity to improve 

the detection of lower-abundance/activity taxa. 
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Other groups have also been successful with direct microarray-based rRNA analysis. Small 

et al. (Small et al., 2001) hybridized total RNA from a soil extract to a simple microarray and 

demonstrated that rRNA could be analyzed without amplification, however they used biotin 

labeled detector probes rather than direct RNA target labeling. An important finding in this study 

was that fragmentation of the RNA produced greater hybridization specificity and sensitivity 

presumably through reduction of the complex secondary structure inherent in rRNA molecules. 

With this in mind, the choice of the most appropriate method for fragmentation must consider 

compatibility with the labeling procedure. Again, we have chosen to use the approach of Cole et 

al (Cole et al., 2004) by using an enzymatic RNA fragmentation procedure. This procedure uses 

RNaseIII (a double strand-specific ribonuclease) and shrimp alkaline phosphatase to 

simultaneously perform controlled fragmentation and dephosphorylation of the target RNA, 

yielding fragments in the range of 20-200 nucleotides. The dephosphorylation step is necessary 

because of the requirement of T4 RNA ligase for a 3’-hydroxyl on the RNA target. 

 

2.6 Example application of direct RNA labeling and PhyloChip analysis - Monitoring 

bioremediation of uranium contaminated sediments. 

A promising strategy for the containment of uranium within contaminated sites is in situ 

bioprecipitation. The valency state of uranium in contaminated groundwater and sediment, 

U(VI), is soluble and thus capable of transport by advective and diffusive processes. The 

tetravalent form, U(IV) is highly insoluble and therefore has reduced mobility. Metal-reducing 

bacteria such as those that typically respire iron have been proposed as efficient catalysts for 

reductive precipitation of uranium and several laboratory and field studies have demonstrated the 

feasibility of this approach (e.g. (Anderson et al., 2003; Brodie et al., 2006; Chang et al., 2005; 
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Peacock et al., 2004; Reardon et al., 2004; Wan et al., 2005)). One concern however, is the long-

term stability of the bioreduced U(IV) and recent studies have demonstrated re-oxidation under 

anaerobic conditions (Ginder-Vogel et al., 2006; Wan et al., 2005).  

In our studies we noted a carbonate-associated re-oxidation of U(IV) and further 

experiments were carried out to determine the influence of organic carbon (OC) electron donor 

concentration on the extent of re-oxidation (Wan et al., 2005).  In one set of columns, 

concentrations (32mM OC) were retained at the concentration where re-oxidation was first noted 

after a period of successful reduction. In another set of columns, initially at 32mM OC, we 

increased the concentration to 100mM OC while eliminating OC from a third set of columns 

(0mM OC). As hypothesized, uranium re-oxidation increased with increasing OC concentration 

and was correlated with increased carbonate concentrations. Uranium re-oxidation ceased in the 

columns without OC additions. To examine the impact of changing carbon concentrations on the 

microbial community structure we first employed PhyloChip analysis using DNA extracted from 

the column sediments. Following amplification of the 16S rRNA gene, array analysis between 

the three treatments (0, 32 and 100 mM OC) indicated no significant differences in hybridization 

intensity among the 271 subfamilies detected (of the 842 subfamilies represented on the array). 

Figure 3A shows a comparison by DNA analysis between 0 and 100 mM OC treatments.  At the 

point of sampling, columns had been running for almost two years with continuous OC addition, 

and most available electron acceptors (oxygen, nitrate, iron, manganese, sulfate) had been 

depleted or were of low bioavailability, therefore limitation on microbial replication may have 

been due to the limited electron acceptor and not the electron donor. Despite depletion of 

electron donors and the re-oxidation of uranium, several genera of metal-reducing bacteria 

including Geobacter and Desulfovibrio were still detected at similar intensities to those detected 
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during the reducing phase. We hypothesized that cell-turnover was electron-acceptor limited but 

cellular activity was being maintained through interspecies electron-transfer. To assess this, we 

extracted RNA from the sediment samples, gel-purified the 16S rRNA band, fragmented, labeled 

and hybridized the material directly to the PhyloChip without any primers or amplification steps.  

[ insert fig 3 here] 

[Figure 3. Comparison of microbial population dynamics under contrasting carbon amendment 
conditions using PhyloChip analysis of (A) DNA (PCR amplicons) and (B) RNA hybridization. 
X and Y axes display probe set intensities in arbitrary units under two carbon conditions (100 
and 0 mM.] 

 

Figure 3B shows a comparative analysis of hybridization intensities between the 0 mM and 

100 mM organic carbon (OC) treatments. Immediately apparent was the detection of Geobacter 

16S rRNA, indicating continued activity of this proven uranium reducing bacterial genus, despite 

observed re-oxidation. We also detected 16S rRNA of the methanogenic genus Methanosarcina. 

Various methanogens and sulfate reducers (also detected) are known to enter into syntrophic 

associations with the methanogens acting as biological electron acceptors in the absence of 

sulfate (Bryant et al., 1977). Other active organisms detected such as the acetogens, 

Syntrophobacter and Syntrophus, are specialized in exocellular electron transfer and may also 

serve as a sink for electrons in the absence of sulfate or possibly iron. Intriguingly, Geobacter 

species may also enter into syntrophic electron transfer associations although to date their 

association with methanogens is unclear. 

 

3. GeoChip, A FUNCTIONAL GENE ARRAY 

3.1 Design and construction  
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Construction of FGAs faces many challenges in both microarray-based technologies (Zhou, 

2003) and computational software development.  First, a retrieval of sequences specific to a 

particular functional gene by key words alone is difficult because gene/protein names are not 

always specific, or they can be differently annotated in different organisms. On the other hand, 

using functionally characterized and known sequences to search databases usually leads to a 

large number of hits, and it really depends on the threshold used. Additional difficulties are that 

variants of a functional gene are often highly similar, and most of them are homologues; 

sequences from uncultured microbes or laboratory clones may not be complete; and the number 

of deposited sequences for each gene continuously increases. Thus, it is very difficult to select 

specific probes for all variants (sequences) of a functional gene, which leads to a low coverage 

for most functional genes. In addition, standardization of oligonucleotide probe design criteria 

and software development is still challenging. FGA oligonucleotide probes should be capable of 

specifically detecting their targets in a complex sample whose components are not known. In 

addition, for data normalization and analysis, FGAs are very different from the most commonly 

used gene expression arrays, and novel methods are needed.  Finally, in the era of genomics and 

meta-genomics, microbial sequences are daily produced in a gigabyte or terabyte fashion. A 

comprehensive FGA must be periodically updated to reflect the latest information. 

To address the above challenges, some strategies have been developed or are in 

development. First, functional gene sequences are first retrieved using key words, and then 

unrelated sequences are removed by the HMMER program (http://hmmer.wustl.edu/). Second, 

functional gene sequences are aligned using a multiple sequence alignment (MSA) program after 

verification by HMMER. Only the shared regions of the functional genes are used for probe 

design. Third, experimentally established oligonucleotide design criteria and a novel software 
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tool specifically targeting highly similar sequences are used to select oligonucleotide probes. 

Fourth, to detect both divergent and closely related sequences, both gene- and group-specific 

probes can be designed.  

Details for GeoChip 2.0 design and construction were described by He et al. (He et al., 

2007). Briefly, the major steps include: (1) Sequences of individual functional genes were 

retrieved from publicly available databases (e.g. NCBI GenBank). (2) 50mer oligonucleotides 

were designed after the removal of unrelated sequences using the oligouncleotide probe design 

software CommOligo (Li et al., 2005) with a new feature for group-specific probe selection, and 

experimentally established oligonucleotide design criteria (He et al., 2005b; Liebich et al., 2006).  

Both gene-specific and group-specific probes were designed with the following criteria: (i) gene-

specific probes with sequence identity ≤90%, stretch ≤20 bases, and free energy ≥-35 kcal/mol 

(Liebich et al., 2006); and (ii) group-specific probes with sequence identity ≥96%, continuous 

stretch length ≥ 35 bases, and free energy ≤-60 kcal/mol (He et al., 2005b). (3) Oligonucleotide 

probes were designed on the basis of all variants (sequences) of the same gene. To ensure the 

whole array specificity, all designed probes of different genes were verified using the same 

design criteria against larger databases, such as NCBI and EMBL. (4) All verified probes were 

commercially synthesized, and spotted on glass slides (e.g. Corning UltraGAPS). (5) After 

printing, the slides were dried and then UV-cross-linked according to manufacturer’s 

instructions. It should be kept in mind that since the number of sequences in databases increases 

rapidly, it is important to periodically update the FGA databases and chips to reflect the current 

status. 

 

3.2 Specificity, sensitivity and quantitative capability 
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Specificity is one of most important parameters to ensure that high quality microarray data can 

be obtained, and it is even more critical for FGA analysis of environmental samples. Microarray 

specificity can be controlled by probe design and hybridization conditions. Tiquia et al. (Tiquia 

et al., 2004) showed that sequences could be differentiated with < 86% identity when 

hybridizations were at 50oC, and sequences with < 90% identity at 55oC using a 50mer FGA 

with 763 probes for nitrogen cycling (e.g. nirS, nirK, nifH) and sulfate reduction (e.g. dsrA/B) 

genes. With a 50mer FGA containing 1662 probes for genes involved in contaminant 

degradation, Rhee et al. (Rhee et al., 2004) showed that at hybridization conditions of 50oC and 

50% formamide, the 50mer microarray was able to differentiate sequences with < 88% identities. 

In addition, Bozdech et al. (Bozdech et al., 2003) showed that a significant cross-hybridization 

could occur if a 70mer probe had free energy < -35 kcal/mol. Therefore, based on sequence 

identity, continuous sequence stretches and free energy, we have experimentally established 

probe design criteria (He et al., 2005b; Liebich et al., 2006). Furthermore, those criteria have 

been implemented in a novel software tool, CommOligo, for microarrays probe design (Li et al., 

2005). Our GeoChip was designed using the newly developed software, and the evaluation 

results showed only a very small portion of false positives (0.002-0.004%) and no positive 

negatives (He et al., 2007). Therefore, a well designed FGA can achieve its desirable specificity.  

 

Sensitivity is a critical parameter, particularly for environmental studies when biomass is 

low or for low-level molecules in individual cells. When cDNA-based (PCR-generated probes) 

functional gene arrays (FGA) were used, the detection limit for nirS (nitrite reductase) genes was 

approximately 1 ng of pure gDNA and 25 ng of soil community DNA (Wu et al., 2001).  When 

oligonucleotide arrays with capture and detector probes were used, a previous study 
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demonstrated that the detection sensitivity for Geobacter chapellei SSU rRNA gene sequences in 

soil extracts was approximately 500 ng of total RNA (Small et al., 2001).  Recently, studies with 

a 50mer FGA showed that the detection limit for some functional genes could be 5 to 10 ng of 

pure gDNA and 50 to 100 ng in a mixture of gDNA from different organisms (Rhee et al, 2004; 

Tiquia et al, 2004). By  taking advantage of the WCGA approach, the 50mer FGA can detect 

subnanogram quantities of microbial community DNAs as low as 10 pg (Wu et al., 2006). 

Therefore, the currently available technologies can generally obtain enough nucleic acids for 

FGA analysis, although challenges may still remain for those genes with low abundances in an 

environmental sample. 

The quantitative capability of microarray-based technology is another central issue for 

environmental applications. Several previous studies showed that very good linear relationships 

were obtained between hybridization signal intensity and target DNA or RNA concentration 

from pure cultures, mixed cultures, and environmental samples (Rhee et al., 2004; Wu et al., 

2006; Wu et al., 2001). Recently we showed that reliable quantification could be obtained using 

a 50mer FGA with randomly amplified DNAs (Wu et al., 2006), or randomly applied RNAs 

(Gao et al., 2007), as targets. Thus, it is expected that FGAs can serve as a quantitative tool to 

analyze environmental samples. 

 
3.3  Data normalization and analysis 

Microarray data normalization is necessary to adjust microarray data for effects that arise from 

variations in the microarray technology rather than biological differences between samples, or 

probes on an array. Microarray technology variations may be due to dye bias, labeling efficiency, 

different scanning properties and settings, and use of different reagents, which can be 

systematically corrected. Normalization can be performed within a chip and among replicate 
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chips. However, a normalization of microarray data needs to consider the following aspects: (i) 

what percentage of spots have positive signals on the array for each slide since a microarray 

normally contains a comprehensive set of probes and some microbial communities may be very 

simple, or complex; (ii) what spots are used as the control for normalization; (iii) the distribution 

of signals among positive spots or all spots on the array; (iv) normalization methods may be 

different based on different situations mentioned above. The following is a simple method for 

analyzing digital array data output from image processing software (e.g. ImaGene, BioDiscovery 

Inc.).  This method includes the following key steps: (i) poor-quality spots are removed, (ii) the 

signal intensity of each spot is normalized by calculating the mean intensity, (iii) spots with low 

signal intensities are removed based on the signal-to-noise ratio (SNR) (Wu et al., 2006) and 

normally, an SNR of 2.0 is generally used (Verdick et al., 2002), and  (iv) for outlier removal, if 

any of replicates (slides) has (signal – mean) more than three times the standard deviation, this 

replicate is removed. This process continues until no such replicates are identified. 

Data analysis is the most difficult task for microarray analysis of microbial communities. 

First, a massive amount of data is generated by microarray hybridization. Second, although many 

methods and software have been developed for microarray data analysis, most of them are 

focused on the analysis of gene expression data, especially two-dye microarray hybridization, 

and they may not be suitable for microarray data analysis. Third, microarray data generally have 

large variations, and rigorous statistical analysis of such data is needed (He and Zhou, 2008). 

Statistical analysis of microarray data is complicated. Finally, our ultimate goal is to extract 

biological insights from such large data sets to understand microbial structure and function, so 

the results should be of biological relevance and statistical significance. 



 31

The following statistical approaches are commonly used to analyze microarray data: (1) 

Scatter plot. This is the simplest way to visualize microarray data. Scatter plots can display 

signal intensities for a single chip with two-dye hybridization, or for two chips with one-dye 

hybridization. (2) Principal component analysis (PCA). This is an exploratory multivariate 

statistical method for simplifying data sets that reduces the dimensionality of the variables by 

finding new variables, which are independent of each other. A few of the new variables, typically 

2-3, are selected to explain the majority of variance in the original data. For microarray data 

analysis, genes or experiments can be considered as variables. The main advantage of PCA is 

that it identifies outliers in the data or genes that behave differently than most of the genes across 

a set of experiments.  (3) Cluster analysis. One of the most commonly used methods is cluster 

analysis. Cluster analysis is used to identify groups of genes, or clusters that have similar 

profiles. Clusters and the genes within them can be subsequently examined for commonalities in 

functions and sequences for better understanding of how and why they behave similarly. Cluster 

analysis can help establish functionally related groups of genes to gain insights into structure and 

function of a given microbial community. A popular clustering method was developed by Eisen 

et al. (Eisen et al., 1998), and other algorithms were described by Heyer et al. (Heyer et al., 

1999), Travazoie and Church (Tavazoie and Church, 1998), and Zhou et al. (Zhou et al., 2000). 

(4) Neural network analysis. Since clustering methods have some serious drawbacks in dealing 

with data with a significant amount of noise, a fundamentally different network-based approach 

has been proposed for microarray data analysis (Herrero et al., 2001; Tamayo et al., 1999; 

Toronen et al., 1999). Unsupervised neural networks, such as self-organizing maps (SOMs), are 

a more robust and accurate method for grouping large data sets. The main advantage of SOMs is 

that they are robust to noise, and SOMs are also reasonably fast and can be easily scaled up to 
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large data sets. One disadvantage of SOMs is that they require pre-determined choices about 

geometry. In addition, it is very difficult to detect higher-order relationships between clusters of 

profiles due to the lack of a tree structure (Herrero et al., 2001).  To overcome some of the 

limitations of SOMs, an unsupervised neural network, termed the self-organizing tree algorithm 

(SOTA), was proposed (Dopazo and Carazo, 1997). This new algorithm combines the 

advantages of hierarchical clustering (tree topology) and neural network (accuracy and 

robustness) and was used to analyze gene expression data (Herrero et al., 2001). 

There are many commercial and free software tools available for general microarray data 

analysis. Such tools are as simple as Excel (Microsoft), or as complicated as Matlab (The 

MathWorks), and those include R, GeneSpring (Agilent Technologies), Genesight 

(BisDiscovery), S-Plus (Insightful Corporation), SPSS (SPSS Inc.), SAS (SAS Institute Inc.), 

and SAM (Tusher et al., 2001).  It is noted that most currently available tools are focused on the 

analysis of gene expression data. Therefore, we need to carefully choose suitable tools for 

microarray data analysis. For example, to examine the correlations between the differences of 

uranium concentrations and those of various functional gene abundances, we used R to 

implement the Mantel test (He et al., 2007). 

Finally, such large data sets need to be simply presented and biologically interpreted.  

Richness of different gene categories in the community as a whole in the studied samples can be 

determined from the number of probes that detect their target(s). With probes by category (e.g. 

nifH) as indicators of individual taxa, Simpson’s diversity index, Shannon diversity index, and 

Evenness based on Simpson’s index can be calculated as described previously (Begon et al., 

1996). To compare different samples, some genes are specifically detected in one sample, and 

some in all samples tested. The numbers of those two type of genes can be calculated as unique 
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and overlap genes as described previously (Wu et al., 2006). Clustering is one of the most 

popular methods to analyze and visualize microarray data. Using a hierarchical clustering 

algorithm, the relationship between different samples taken at different times/sites and different 

clusters among those samples can be identified. Such analysis can be also applied to each 

gene/category with its variants. The software Cluster can be used for cluster analysis and 

TreeView for visualization (Eisen et al., 1998). In addition, the network analysis of microarray 

data has received significant attention, and such a method may be used to present and interpret 

microarray results. 

 

3. 4 Example applications of functional gene arrays for microbial community analysis 

FGAs have been extensively evaluated with artificial microbial communities (He et al., 2007; 

Loy et al., 2004; Rhee et al., 2004; Steward et al., 2004; Taroncher-Oldenburg et al., 2003; 

Tiquia et al., 2004; Wu et al., 2006; Wu et al., 2001) and applied to investigate microbial 

communities in natural and contaminated environments (He et al., 2007). Since all probes were 

designed using functional gene coding sequences, both DNA and RNA can be used as targets for 

measuring gene abundance and gene expression, respectively. Therefore, FGAs can be used in a 

variety of studies, including (but not limiting): (1) detection of functional genes and/or organisms 

in a particular environment; (2) linking microbial structures to function; and (3) estimation of 

gene abundance and activity.  The GeoChip can be used for analysis of any environmental 

sample, including soil, water, sediments, oil fields, deep sea, animal guts, etc. 

 Here, an example study is presented for using an FGA (with 2006 50mer oligonucleotide 

probes) to analyze the structure and activity of microbial communities in groundwater (Wu et al., 

2006).  The Environmental Remediation Science Program (ERSP) field research center (FRC) 
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sites are contaminated with nitrate, uranium, and technetium, as well as some residual organic 

compounds. Samples from five wells with different degrees of contamination were collected at 

such a site in Oak Ridge, TN. Microarray analyses showed more than 400 genes had positive 

hybridization signals (Table 2). As expected, the highest number of genes was detected for 

uncontaminated background samples (well FW300), while the lowest number of genes was 

detected for the highly contaminated sample (well FW010) (Table 2). Simpson's diversity indices 

showed that the diversities in the uncontaminated background well (FW300) and less 

contaminated well (FW003) were much higher than those in more heavily contaminated wells 

(FW021, FW024, and FW010), suggesting contaminants strongly affected the microbial 

communities (Table 2). The proportion of overlapping genes in different samples was consistent 

with the contaminant level and geochemistry (Table 2). 

Some important genes involved in denitrification (e.g., nosZ and nirS), degradation of 

organic contaminants (e.g., dienelactone hydrolase genes), and metal resistance (e.g., mercuric 

reductase gene) were observed in all samples (Fig. 5), suggesting that the microbial populations 

containing these genes are widespread. Dissimilatory sulfate-reducing bacteria are important in 

the reduction of uranium from soluble U(VI) to insoluble U(IV). In contrast to the results 

described above, while some dissimilatory sulfite-reducing organisms (dsrAB) were found in all 

of the samples (group D), the abundance and presence of most types (groups A, B, and C) 

seemed to vary with the origin of the sample (Fig. 5). The above results are consistent with 16S 

gene phylogenetic analysis, and recent microbial community sequencing data. Therefore, as a 

specific, sensitive and high-throughput tool, the FGA technology is capable of revealing 

biological processes of microbial communities in natural/contaminated environmental systems. 
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The GeoChip 2.0 has also been successfully used in our laboratory for tracking the 

dynamics of metal-reducing bacteria and associated communities for an in situ bioremediation 

study at the ERSP Oak Ridge FRC (Field Research Center) site, which is the first time to demonstrate 

that uranium can be bioremediated to the concentrations below the USA EPA maximum 

contaminant level (MCL) for drinking water (He et al., 2007). In addition, a FGA has been 

recently used to characterize pure isolates, analyze soil microbial nitrogen and carbon cycles 

along a south polar latitudinal gradient (Yergeau et al., 2007), to investigate microbial 

community structure during bioremediation of a hydrocarbon-contaminated aquifer, and to 

identify active members in a stable isotope experiment fed with labeled biphenyl. The GeoChip 

2.0 has also been used to examine the gene-area relationship of microbial communities in soils, 

and the results suggest that a forest soil microbial community exhibited a relatively flat gene–

area relationship, but the z (z is a measurement of the rate of species turnover across space in a 

power-law relationship: S = cAz, where S is the number of species, A is the area, and c is the 

intercept in log-log space) values varied considerably across different functional and 

phylogenetic groups (Zhou et al., 2008). All resulting data from these studies indicate that the 

functional gene array technology is a powerful tool for studying microbial communities in the 

environment. 

 

4. CONCLUDING REMARKS 

We are entering a new era in environmental microbiology where we are beginning to understand 

some of the complex and interdependent relationships among prokaryotes in natural 

communities.  Starting with an acid mine drainage (AMD) community (Tyson et al., 2004) and 

working up in complexity to the Sargasso Sea (Venter et al., 2004) and a Minnesota farm soil 
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(Tringe et al., 2005), shotgun microbial community sequencing (metagenomic sequencing) has 

implicated taxa and specific genes that contribute to the overall cellular respiration and other 

important functions of a microbial community (See Chapter x).  Phylogenetic arrays such as the 

PhyloChip that target the known diversity within bacteria and archaea are important for 

determining the composition of microbial communities in a number of different environments 

and conditions.  Functional gene arrays such as the GeoChip are important for identifying 

physiological activities involved in certain biogeochemical processes.  

The development and application of microarray technology for environmental studies has 

received a great deal of attention. Because of its high-density and high-throughput capacity, it is 

expected that such a technology will revolutionize the analyses of microbial community 

structure, function and dynamics. Current studies showed that microarray technology is able to 

provide specific, sensitive, and potentially quantitative analysis of microbial communities from a 

variety of natural environments. It is also useful for providing direct linkages of microbial 

genes/populations to ecosystem processes and functions. Unlike more costly and time consuming 

methods such as metagenomic, or 16S clone library sequencing, microarrays allow high 

throughput sampling so that multiple replications and multiple treatments can be examined.  

Identifying the population dynamics of specific taxonomic groups in response to defined 

conditions is the first step towards understanding how they may contribute to the overall 

microbial community structure. 

However, more rigorous and systematic assessment and development are needed to realize 

the full potential of microarrays for microbial ecology studies. Several key issues need to be 

addressed, including novel experimental designs and strategies for minimizing inherent high 

hybridization variations to improve FGA-based quantitative accuracy, novel approaches for 
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increasing hybridization sensitivity to detect extremely low biomass in natural environments, 

novel computational tools for microarray data interpretation, and broad integration and 

application of microarray technologies with environmental studies to address ecological and 

environmental questions and hypotheses.  Therefore, the future focuses will be not only on 

microarray technology and applications, but also on microarray-related data analysis, 

interpretation and modeling. First, novel strategies and approaches for experimental controls and 

design are needed to ensure that microarray hybridization data from different samples are 

comparable, interpretable and biologically significant because of the inherent variability in 

microarray hybridization signals. Second, automatic bioinformatic and computational tools are 

necessary to retrieve gene sequences, design oligonucleotide probes, construct databases, and 

update sequence, probe and array information. In addition, more advanced automatic 

mathematical and statistical approaches, such as multivariate analysis, time-series analysis, 

neural network, artificial intelligence, and differential equation-based modeling, should be 

extremely useful for rapid pattern recognition, visualization, data mining, cellular modeling, 

simulation and prediction.   
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Table 1. List of major functional markers on the GeoChip 2.0 
 

Gene category Example of key enzyme (gene)  Total_probe# 
Nitrogen cycling  5310 
Nitrogen fixation Nitrogenase (nifH)  1225 

Denitrification Nitrate reductase (narG, napA, nasA), nitrite reductase 
(nirS, nirK), nitric oxide reductase (norB), nitrous oxide 
reductase (nosZ)  

2306 

Nitrification Ammonium monooxygenase (amoA), hydroxylamine 
oxidoreductase (hao)  

347 

Nitrogen mineralization Urease (ureC), glutamate dehydrogenase (gdh) 1432 

Carbon cycling  4599 
Carbon fixation Rubisco (cbbL, rbcL), Acl (aclB), CODH, FTHFS  1018 

Cellulose degradation Cellulase, endoglucanase 1285 

Lignin degradation Laccase, mannanase 513 

Chitin degradation Endochitinase (chiA), exochitinase 744 

Methane production  Methyl coenzyme M reductase (mcrA) 437 

Methane oxidation Methane monooxygenase (pmoA) 336 

Others Lignin peroxidase (lip), pectinase, cellobiase 266 

Sulfate reduction  1615 
 Sulfite reductase (dsrA/B), APS (apsA) 1615 

Phosphorus utilization  145 
 Exopolyphosphatase (ppx), phytase 145 

Metal reduction and resistance  4546 
Arsenic resistance Arsenate reductase (arsC, arsB, arsC) 877 

Cadmium resistance Cadmium transporter (cadA, cadB, cadC) 282 

Chromium resistance Chromium/chromate transporter (chrA) 319 

Mercury resistance/reduction Mercuric ion reductase/transporter (mer, merA, merB)  548 

Nickel resistance Nickel transporter (nccA), permease (nreB) 140 

Zinc resistance Zinc resistance protein (zntA) 128 

Other metal resistance/reduction cobalt resistance proteins, selenium reductase, etc.  2252 

Contaminant degradation  8028 
Benzene, toluene, ethylbenzene, and 
xylene (BTEX)  & related aromatics 
 
 

Benzene 1,2-dioxygenase (ben), ethylbenzene 
dehydrogenase (ebd), benzylsuccinate synthase (bss), 
xylene monooxygenase (xyl), benzoyl-CoA reductase 
(bad), and catechol 1,2-dioxygenase (cat, tfd). 4176 

Chlorinated aromatics Chlorophenol reductive dehalogenase (cpr) 90 
Nitroaromatics 
 

Nitrobenzene nitroreductase (nbz), 4-nitrobenzaldehyde 
dehydrogenase (ntn), p-nitrobenzoate reductase (pnb) 152 

Polycyclic aromatic hydrocarbons 
(PAHs) 

Naphthalene dioxygenase (nah), PAH ring-
hydroxylating dioxygenase (pdo) 741 

Polychlorinated biphenyls (PCBs) Biphenyl dioxygenase (bph)  388 

Chlorinated solvents (e.g. PCE) PCE/TCE reductive dehalogenase (rdh, pceA, tecA) 232 
Other organic compounds/by- 
products 
  

Alkane hydroxylase (alk), homogentisate 1,2-
dioxygenase (hmg), vanillate O-demethylase oxygenase 
(van), etc. 2249 

Total 19959 24243 
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